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Abstract

This report describes in some detail a Chombo implementation of an adaptive mesh refinement
(AMR) finite-difference time-domain (FDTD) demonstration code. The code simulates propagation
of a Gaussian pulse in vacuum. The modeled system has been maximally simplified, so as not to
obscure the AMR manipulations, which are the focus of the example. And so we have no PML at
the boundary of the region and, consequently, time stepping is limited to 50 steps at the coarse level.
The AMR structure is limited to two levels. Gnuplot animations generated by the program illustrate
propagation of electric and magnetic fields at both AMR levels, as well as AMR cell tagging and

evolution of the fine level grid structure. Open issues are flagged with the @ sign on the margins.
They are discussed, wherever there is anything constructive to say about them and related further
development work is suggested.
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1 Introduction

This document discusses in some detail implementation of a very simple adaptive mesh refinement
(AMR) finite-difference time-domain [5] [6] (FDTD) demonstration code. The code is implemented
using the Chombo package [1] developed at the Lawrence Berkeley National Laboratory (LBL) by
the Applied Numerical Algorithms Group (ANAG).

The purpose of the code is to explore and demonstrate use of Chombo and AMR more than to
solve a specific problem of computational electrodynamics. Consequently the electrodynamic part
of the code, encapsulated on a separate Fortran file, has been simplified to an absolute minimum.
The Fortran file is only about 100 lines long compared to about 1000 lines of the Chombo code.
It implements simple propagation of a Gaussian pulse in 2 dimensions without absorption at the
boundary. The cylindrical wave spreads symmetrically from the origin of the pulse in the middle of
the computational domain. But the code does not make use of the symmetry of the problem. In effect
the symmetry and its maintenance throughout the evolution of the system serve as an additional
check on the correctness of the numerical procedures employed.

The program does not utilize Chombo IO subsystem, instead writing computed data as plain
text files, formatted for display with Gnuplot [3]. Gnuplot command files for the display of the
data are generated by the program too. This way the program’s results can be viewed on a simple
UNIX/Linux or Cygwin workstation without having to install additional visualization software (or
hardware). The program itself can be compiled and run on the same workstation, if Chombo has
been installed on it too.

At this stage of the development and research I prefer to stay away from parallel computer
systems and from 3-dimensional computations, focusing instead on the FDTD/AMR algorithm, its
basic implementation within the Chombo framework, and the correctness of numerical procedures
used by the program. It is very important that these basic problems are fully resolved first, before
we embark on much more complicated large scale production work.

The moment we switch to 3-dimensional computations we will have to embrace Chombo par-
allelization, Chombo IO and Chombo visualization all at the same time. The complexity of the
simulations at that stage and the required logistics will become so overwhelming that the study of
algorithmic correctness and fundamental issues will become markedly more difficult.

2 Chombo

Chombo is a library of C++ classes and functions for implementing and managing rather complex
logistics and data movements associated with adaptively refined grids used in parallel finite difference
codes. The basic idea behind Chombo is that all such manipulations can be carried out within a
Chombo C++ wrapper, with the actual finite difference computations offloaded onto a simple Fortran
subroutine.

This means that a Chombo user must be equally comfortable with both C++ and Fortran, as
well as with subtleties of calling Fortran subroutines from a C++ program. The way Chombo data
is laid out in the computer’s memory assumes that it is going to be passed to Fortran and not to a
C or C++ function.

Although it would be possible to do it all either in C++ or in Fortran, for neither of the two lan-
guages is significantly superior to the other, this dichotomy reflects differing preferences of computer
and computational scientists. Where the two end up working with each other, a hybrid C++ /Fortran
child is born.

Chombo can be downloaded from



http://seesar.lbl.gov/anag/chombo/

Chombo is not a stand-alone code. It depends on other software, most notably on GNU make, Perl,
HDF5 [4] and MPI. C++ and Fortran-77 compilers are required too. Specific versions of third party
software packages are listed on the Chombo WWW page. Some of these are optional. For example,
it is possible to configure and compile a non-MPI, non-HDF5 version of Chombo.

Chombo installation itself may be a little daunting, and generally users should probably request
that their systems administrators do it for them. Chombo should be configured and compiled sep-
arately for its various flavours, e.g., 2-dimensional versus 3-dimensional, parallel versus sequential,
double precision versus single precision, with HDF5 versus without and so on. On the other hand, the
package is not as large or computationally heavy as it seems to be at first glance, and it is perfectly
possible to run 2-dimensional double precision Chombo programs on a laptop. The demonstration
program discussed in this report was developed and tested on an 863 MHz Pentium III with 256 MB
memory and a 30 GB internal drive under Windows XP/Cygwin. A rather unimpressive system by
today’s standards.

Cygwin or MacOS X installation of Chombo may be somewhat tricky on account of Windows
and Macintosh file systems not distinguishing between upper and lower case letters in file names.
There is a manual cludge around this problem — but here, again, it would be best for the user to
seek professional assistance.

Chombo installation is discussed in the “Chombo Design Document” [2], which can be down-
loaded from the Chombo WWW site. Additionally the Chombo source is provided with the Chombo
Reference manual in the HTML format, the first page of which lives on

Chombo/1ib/doc/doxygen/html/index.html

The Design Document fulfills the role of a “User Guide” and explains the general concepts and
programmer interfaces to various Chombo utilities. But it is not an easy document to read and it
is not complete either. Chombo source is provided with several examples, mostly rather elaborate,
and their study is essential for anyone trying to master the package.

Chombo is compiled and installed in situ, which means that its libraries and includes are built
during the compilation and placed right above the source in the top level Chombo library directory.
There is no “make install” step common in other software packages.

The top level Chombo directory splits into two branches:

Chombo/example
Chombo/1ib

The example directory tree contains some of the examples mentioned above. Other examples can be
found in the 1ib/test subdirectory.
The 1ib directory tree of Chombo contains the following subdirectories:

Chombo/1ib/doc
Chombo/1ib/include
Chombo/1ib/mk
Chombo/1ib/src
Chombo/lib/test



Chombo/lib/util

The reference manual lives in the doc subdirectory, as I have mentioned above. The include subdi-
rectory contains Chombo includes. There are nearly a 100 of them. Every major Chombo class comes
with its own include file. The mk subdirectory contains GNU make includes. These files encapsulate
a lot of Chombo complexity, so that GNUmakefile that a user may have in her or his Chombo pro-
gram directory can be deceptively simple. The src subdirectory contains the Chombo source and
the test subdirectory contains several tests that are run during the system installation to make sure
that everything is going to work. The tests are worth studying in their own right. They are markedly
less complex than the examples provided in the Chombo/example directory tree.

Once Chombo has been compiled and installed the library files are placed in the Chombo/1ib
directory. There is a separate library for every major Chombo toolkit. The libraries have very long
names that encapsulate not only what the library is for, but also the architecture the library has
been compiled for as well as other configuration details. For example, on my system, which is Win-
dows XP/Cygwin, and on which I used GNU g++ and g77 compilers to construct a 2-dimensional,
double precision version of Chombo, the libraries have the following names:

libamrelliptic2d.CYGWIN.g++.g77.a
libamrtimedependent2d.CYGWIN.g++.g77.a
libamrtools2d.CYGWIN.g++.g77.a
libarrayview2d.CYGWIN.g++.g77.a
libboxtools2d.CYGWIN.g++.g77.a
libparticletools2d.CYGWIN.g++.g77.a

But a user is not expected to link against these libraries explicitly. The Chombo make file system
will look up appropriate includes and load appropriate libraries automatically.

Here is an example of how it all comes together. The code this report is going to talk about lives
in a directory called AMR. There are three files in this directory:

AMR/GNUmakefile
AMR/fdtd.cpp
AMR/update.F

The fdtd. cpp file contains the C++ Chombo code. The update.F file contains the Fortran-77 code
that is used to timestep the system and GNUmakefile contains make instructions.
This is what GNUmakefile looks like:

CHOMBO_HOME = /home/ANL/src/Chombo/1ib
ebase := fdtd

LibNames := BoxTools AMRTools

BASE_DIR = .

VPATH_LOCAL = .

F_SOURCES =

CXX_SOURCES = fdtd.cpp

FORT_SOURCES = update.F



C_SOURCES =
INPUT = fdtd.input
include $(CHOMBO_HOME)/mk/Make .example

The first line defines the location of the Chombo library, CHOMBO_HOME. The second line, ebase,
defines the base for the name of the binary to be built. The binary in this case is going to be called

fdtd2d.CYGWIN.g++.g77.ex

The program will need Box Tools and AMR Tools. This is specified on the third line. The CXX_SOURCES
and FORT_SOURCES lines specify where C++ and Fortran-77 sources are. Finally GNUmakefile in-
cludes $(CHOMBO_HOME) /mk/Make .example, that is going to do all the rest, i.e., point the compiler
to the appropriate includes and load appropriate libraries.

To make the program the user types make fdtd, and this is how the Chombo make system is
going to respond:

$ make fdtd

Depending update.F ...

Depending fdtd.cpp ...

make fdtd2d.CYGWIN.g++.g77.ex

make[1]: Entering directory ‘/home/ANL/src/demo’

g++ -02 -funroll-loops -Wno-long-long -Wno-sign-compare \
-Wno-deprecated -ftemplate-depth-25  -DCH_SPACEDIM=2 \
-DCH_CYGWIN -DNDEBUG -DCH_USE_DOUBLE -I/home/ANL/include \
-DHDF5 -DCH_FORT_UNDERSCORE -I/home/ANL/src/Chombo/lib/src/BoxTools \
-I/home/ANL/src/Chombo/1ib/src/AMRTools -DENABLE_MEMORY_TRACKING \
-DCH_LANG_CC -c fdtd.cpp -o o/2d.CYGWIN.g++.g77/fdtd.o

g++ -E -P -DCH_SPACEDIM=2 -DCH_CYGWIN -DNDEBUG -DCH_USE_DOUBLE \
-I/home/ANL/include -DHDF5 -DCH_FORT_UNDERSCORE \
-I/home/ANL/src/Chombo/1ib/src/BoxTools \
-I/home/ANL/src/Chombo/1ib/src/AMRTools -DENABLE_MEMORY_TRACKING \
-DCH_LANG_FORT update.F \
| perl /home/ANL/src/Chombo/lib/util/chfpp/fort72 \
| awk ’NF>0’ > £/2d.CYGWIN.g++.g77/update.f

g77 -02 -funroll-loops -fno-second-underscore -malign-double \
-c £/2d.CYGWIN.g++.g77/update.f —o o/2d.CYGWIN.g++.g77/update.o

g++ -02 -funroll-loops -Wno-long-long -Wno-sign-compare -Wno-deprecated \
-ftemplate-depth-25 0/2d.CYGWIN.g++.g77/fdtd.o \
0/2d.CYGWIN.g++.g77/update.o -L/home/ANL/src/Chombo/lib \
-1boxtools2d.CYGWIN.g++.g77 -lamrtools2d.CYGWIN.g++.g77 \
-L/home/ANL/1ib -1hdf5 -1z -1g2c -1lfrtbegin -1lm \
-o fdtd2d.CYGWIN.g++.g77.ex \
|& awk -f /home/ANL/src/Chombo/lib/mk/tempnam.awk

make[1]: Leaving directory ‘/home/ANL/src/demo’

$



The compilation and linking of a Chombo program process is not trivial, but the compilation process
does not clutter the working directory. Instead various auxiliary files are left on subdirectories called
d, f, o, and p. In particular, depend files live in the d directory. The f directory contains preprocessed
Fortran code. The o directory contains object files and the p directory is going to be empty in this
case. The binary, as I have mentioned already, is going to be written on £dtd2d.CYGWIN.g++.g77 .ex.

To run the binary, the user simply types make run, and the Chombo make system figures out
which binary to run, with what options, if any, and which input file to use:

$ make run

Running fdtd for configuration 2d.CYGWIN.g++.g77 ...
Tagging on differences.
Tagging on values.
Advancing Ez_1.
Advancing Hx_1 and Hy_1.
Correcting Ez_O.
Correcting Hx_0 and Hy_O.
Reusing level 1 E data.
Reusing level 1 H data.
Quiet run.

peak memory usage: 1637544 bytes (1 Mb)
. fdtd finished with status 0

In this case the program runs silently, just printing a dot every time it completes an iteration. But
numerous data files are written on the working directory too.

3 The Demo

The demonstration program discussed in this report solves a 2-dimensional version of Maxwell equa-
tions. Vacuum is assumed and there are no free charges or currents. The computational domain is
a 60 x 60 square. There are no absorbing boundary conditions either. In short the electromagnetic
component of the code itself is kept as simple as possible.

The equations of motion that are solved by the code are therefore:

10E, _ 0Hy OH, 1)
c ot Oz dy

10H, oF,

. = _ 2
c Ot oy )
10H,  OE,

c ot Oz )

The FDTD method distributes electric and magnetic fields on the sides of the grid and staggers
them in time in such a way that the divergence equations are satisfied automatically.



Assuming a regular, rectangular grid with Az = Ay and the time step of

At — Az
2c

we end up with the following discretized field equations

P
Ul afs 1 1 o 1
=3 (H;L (Z+ §,J> - Hy (Z - 55.7) — Hy (’%J + 5) + Hy (Z,J - 5)) (5)
. 1 1 . .
et (i ) = (i ) = =3 (B2 4 1) - B2 ) ()
o1 o1 1 . . .
Hy™ (Z + §,J) — Hy (Z + 5,1) = 5 (B2 4+ 1,5) - B2, ) (7)

Observe that neither z, nor y, nor ¢, nor dt, nor dz appear in these equations explicitly. This means
that we can use the same simple Fortran code for time stepping both the coarse and the fine level,
as long as we remember to reduce both dt and dx at the same rate when switching from the coarse
to the fine level.

FDTD fields are distributed on a staggered grid, i.e., E, H; and Hy are not defined on the same
geometric points, or on the same time slices. E, is defined on (3, j), but Hy is defined on (i, +1/2),
whereas Hy is defined on (i +1/2, j). Similarly, F, is defined on the n 4 1/2 time slices, whereas H,,
and Hy are defined on the n slices.

Chombo provides some basic level support for computations on staggered grids. For example,
when a Chombo boz, i.e., a rectangular region of space filled with cubic cells, is defined, it is possible
to specify, whether the grid points associated with the cells are centered on the cell volumes or
on the cell sides, or on the cell corners. Various operations that are then performed on the box,
such as enlargement, or refinement, or coarsening, will take the grid centering into account and act
accordingly. But this support doesn’t go far enough. When the so called disjoint boz layout is defined,
there is already an assumption there that the grids filling the boxes are cell centered. Chombo fields,
referred to as level data are then defined on top of the disjoint box layouts.

The reason for this lack of support for face or node centered data at the higher levels of Chombo
is that adjacent face centered boxes are not disjoint. They overlap, because they share the faces —
and this causes problems.

But Chombo goes some way towards handling face and node centered data. There is a class called
NodeFArrayBoz that is designed to contain node centered data. It can be used to distribute such
data over a disjoint box layout, but the box layout itself is still cell-centered and the NodeFArrayBox
class is really only a wrapper around the cell-centered data container.

Although I have implemented a simple FDTD code that utilized face and node centered Chombo
grids, the only Chombo tools that the code employed were Chombo boxes. This therefore remains
an open problem, both for us and for Chombo designers, to provide full support for staggered grids
within the Chombo framework.

But in our context it is easy enough to work around it, the more so as engineers who use FDTD
in their work seldom make much fuss about the specific placement of the fields, preferring instead
to hand-wire this information into a Fortran code wherever required. And so, equations (5), (6) and
(7) simply get converted into the following lines of Fortran-77:

Ez(i, j) = Ez(i, j)



"Ez_0_005.dat"

Figure 1: Field E, at ¢t = 3.0. Plot from level 0 data.

& + 0.5 * (Hy(i, j) - Hy(i - 1, j) - Hx(i, j) + Hx(i, j - 1))

and then

Hx(i, j) = Hx(i, j) + 0.5 * (Ez(i, j) - Ez(i, j + 1))
Hy(i, j) = Hy(i, j) + 0.5 * (Ez(i + 1, j) - Ez(i, j))

In other words, E,, H; and H, data are all represented by Fortran arrays of the same size — it is just
that we have to remember that, e.g., Hx(i,j) really means H;(i,j + 1/2), Hx(i,j-1) really means
H,(i,5 —1/2), Hy(i,j) really means Hy(¢+1/2,7) and Hy(i-1,j) really means Hy(i —1/2,7).

This way we can forget, at least temporarily, about various placement of FDTD data and develop
the Chombo application as if all this data was cell-centered. In this particular demonstration program
we will not even have to remember about the trick, because absolute positioning is used in the E
advance part of the code only, and F, is cell centered in 2D.

The initial condition for the electric and magnetic fields is zero. A Gaussian pulse (Gaussian in
space and time) is then activated in the middle of the region. Figure 1 shows field E, at ¢ = 3.0.

The pulse, which overwrites F, within the radius of 8.0 from the centre of the region at the end
of every time step (such a source is called hard), is allowed to grow until ¢ = 5.0, whereupon the field
is allowed to relax freely, i.e., the overwrite is disabled at this stage. This results in the field bounce



"Ez_0_045.dat"

Figure 2: Field E, at ¢t = 23.0. Plot from level 0 data.

in the central region and a propagation of a cylindrical wave away from the centre. The resulting
field configuration is shown in figure 2.

Because we have no absorbing boundary conditions, fields are propagated only until ¢ = 25.0.

At every level 0 time step, we inspect field values in every level 0 cell. We now have two options
for tagging the cells, depending on the absolute field values or on the values of field derivaties.

The first option checks if field values exceed a certain threshold in the cell. If they do, we tag the
cell for refinement by adding it to the set of tagged cells.

The second option checks if field derivatives exceed a certain different threshold. If they do, we
tag the cell for refinement in the same way.

The two options can be combined, i.e., cells can be tagged both on field values and field derivatives.

If the set of tagged cells is not empty at the end of this procedure, we generate dynamically
level 1 that comprises disjoint boxes filled with cell centered grids, the grid constant of which is half
of the level 0 grid constant, i.e.,

A.’L‘l = AJ,‘() / 2 (8)

This level 1 structure is then populated with electric and magentic fields, obtained by interpolating
data from level 0 and the level 1 fields are then advanced in time with the time step halved compared
to the level 0 time step, i.e.,

Aty = Aty/2 (9)

Figure 3 shows a set of tagged cells at ¢ = 20.5. Cells are tagged on field values only in this
example. Figure 4 shows a level 1 grid that is generated in this case.
Finally, figure 5 shows a portion of level 1 data for E,.
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Animations that display evolution of E,, H, and Hy at both levels, as well as evolution of the
tagged cells set and of the level 1 grid can be displayed by typing the following commands:

gnuplot Ez_0.plt
gnuplot Hx_0.plt
gnuplot Hy_O.plt
gnuplot Ez_1.plt
gnuplot Hx_1.plt
gnuplot Hy_1.plt
gnuplot Tags_0.plt
gnuplot Boxes_1.plt

P H P P P P P P

Selected data files can be also displayed on top of each other. For example, in order to see how level 1
boxes are built around the tagged cells the user should type the following commands to the gnuplot
program:

gnuplot> set xrange[10:30]
gnuplot> set yrange[10:30]
gnuplot> plot "Tags_0_040.dat" with points, "Boxes_1_040.dat" with points

The resulting diagram is shown in figure 6.

Synchronized time stepping at both levels is quite complicated. To begin with level 0 time stepping
must be always ahead of level 1 time stepping, and level 0 fields for previous time slices must be
preserved so that boundary conditions can be constructed for level 1 fields at every level 1 time step.
The level 1 boundary conditions are constructed by interpolating level 0 data both in space and in
time.

At the end of each bi-level time step, level 0 data is corrected by replacing it with level 1 data
averaged to the level 0 grid.

There is one more operation that must be carried out in order to complete the bi-level time
step procedure. This operation is called refluzing and the current demonstation program doesn’t
do this yet. Chombo does provide special classes for flux correction and they are probably going to
be sufficient. However, at this stage it is not clear to me, nor is it clear to Chombo designers, how
the fluxes should be constructed in the FDTD leap-frog context, how they should be corrected, and
how these corrections should then be translated into specific changes to the F, and H fields on the
fine/coarse boundary. This is an open topic for further research.

I will discuss this issue in some more detail in section 6.

4 The FDTD/AMR Time Step

Figure 7 illustrates the basic leapfrog time stepping scheme of FDTD.

Given E(ty) and H (ty) + At/2) we compute E(ty + At) and then we use this result to compute
H (ty + 3At/2).

Figure 8 shows that straighforward time stepping the fine level in synchrony with the basic level
for At; = Aty/2 is impossible.

14



+
X

XX XXX XXX XXX X T
XX XXX XXX X X X X
O e
XX XX XXX X XXX X

XX XX X XX X X X X X
+ ¥
XX XX XX XX XX X X

XX XX X X X
XX X X X X X

K
XX XX XXX

XXX X X X X
+ ¥
XX XX X X X

"Boxes_1_040.dat"

"Tags_0_040.dat"

XX XXX
XX XXX
XX XXX

£ £
XXX XX

XX XX X X X X
+F
XX XX XX X X

XX XX XXX X
Y
XX XX XXX X

XXX XX XXX XXX X
Y
XXX XXXXXXX XX

XXX XX XXX XXX X
P N S
XX XX XXX XXX XX

XXX XXX XXX XXX XXX X
+OF
XXX XXX XXX XXX XXX X

XXX XXX XXX XXX X X X X
+ A
XX XX XX XX XX XX X X X X

XXX X XXX XXX X XXX XX
O R ST
XOXXXXXXXXX XX XX XX

XXX X XXX XXX XXX X XX
N O T
XX XX XXXXXXOXX X X XX

XXX X XXX XX XX XX
R e
XXX XXX XX XXX

XXX XX XXX XX XX XX
R N T
XXX XXX XX XXX

XXX XXX XX X X X
+ O+t
XXX XXX XX XX X

XXX XXX X XXX X
P G S
XXX XX XX XXX

XXX XXX X XXX X
P T
XXX XX XX XXX

XXX XXX X XXX X
P G S
XX XX XX XX XXX

XXX XXX X X X X X
P
XXX XXX XX XX X

XXX XXX XXX XX
S e
XX XX XX XX XX X

XX XX XXX XXX X XXX XX
1 T T T T
XOXOKOXX XX XXX XXX XX

XX XXX XXX X XXX XXX X X
1 e
XOXXOXX XXX XX XX XX X X

X X XX X
1+
X XX XX

X X X X X
X X X X X

XXX X XX X XXX X X
B XXX XXX X XXX XX
XXX X X X X X X X X X

£
XX XX XX XX XX XX

XXXXAXAHXXAXAXXKXXXXXXX XXX

XXX X XXXXXX X XXX XXX XX
N S e
XXX XXX XX XX XX XXX

XXX AXXXAXXXXXXXXXX XXX

I T I N T
XX XX XX XX XX XX XX XX XX X

4 T

XXXXAXAHKXAXAXXAXXXXXXX XXX

XX XX XXX XXX XX XX XXX X
O T Y T T T T
XX XX XXX XX XXX XXX

XX XX XXX XXX XX XX XXX X
O O Y T T Y
XX XX XXX XX XXX XXX

XXX XXX X XXX XX XXX XX X X X
£ Y Y
XX XX XX XX XX XX XX XX X X X X

XX XXX XXOXXXXXXXX X XXX XX XX XX XXX XXX X X
T S N T T e -
XOXXOXX XXX XOXXXXX XXX XX XX XX XX XX XX X X

XX XXX XX XXX XXX XXX XX XXX XXX XXX X
1o s e e T T T T T T T T
XXX XXX XX XX XX XXX XX XX XX XXX X X X

XX XXX XXX XXX XXX XXX XXX X XXX
1o T T T T T T T T
XXX XXX XX XX XX XX XX XX XX

XX XX XX XXX XX XXX XX XX XXX X

o n
™ N

o
N

15
10

30

25

20

15

10

Figure 6: Tagged level 0 cells and level 1 grid points at ¢ = 20.5.

H
°

E
°

H
°

Re

3At
2

to+ At to+

At
t0+'?;

to

Figure 7: The basic leapfrog time stepping scheme of FDTD.

E

level 0

to+ At to+ 3¢

At
to+‘?f

to

EFE H FEF H FE H FE

level 1

Figure 8: Two level FDTD leapfrog. At; = Aty/2.

15



level 0 E H FE H
[ J [ J [ ] [ ]
to to+ 5L to+ At g+ L

® © o 0 0 0 0 o o o
level 1 EFE HE HE HE HE H

Figure 9: Two level FDTD leapfrog. At; = Aty/3.

level 0 FE H FE H
[ J [ J [ ] [ ]
to to+ 5L to+ At to+ 3L

2
° ° ° ° ° °
level 1 F H FEF H FE

Figure 10: Two level FDTD leapfrog. At; = Aty/2. level 1 E and H are advanced separately.

We can sync both levels on the electric field, but then level 1 will be always At/2 off on the
magnetic field, and vice versa.

A possible solution here is to adopt At; = Aty/3, while preserving Az; = Azy/2. This would
not violate the CFL stability criterion, while at the same time we would be able to sync both E and
H , as shown in figure 9. The problem here is that computers are not very good at dividing by three.

Another solution is to stick to At; = Aty/2, but to time step level 1 E first between ¢y, and
to + At, then go back to tg + At/2 and time step level 1 H between ty + At and to + 3At/2. This is
the solution that I have implemented in the demonstration code. Figure 10 illustrates this strategy.

It would be interesting to compare the two schemes, i.e., the one with At; = Atp/3 and the
one with At; = Atyp/2 and separate advances for level 1 E and H. We would have to scrutinize
whether the Aty/3 scheme does not result in some unexpected problems, although at first glance
there shouldn’t be any, other than possible inaccuracies arising from dividing by 3. Chombo will not
allow for Az to be divided by 3, but in this case we would keep Az = Azy/2.

Time stepping level 1 data requires provision of boundary conditions to the level 1 region on the
level 1/level 0 border. These conditions must be constructed by interpolating level 0 data both in
space and in time. Figure 11 shows how level 0 data must be interpolated to construct boundary
conditions for the level 1 E advance.

The lines connecting both levels illustrate data transfers. For example, in order to construct an
initial condition for the level 1 E time step, we need to have H(ty + At/4). We can construct it
by interpolating between H (tg — At/2) and H(ty + At/2) at level 0. Similarly, in order to provide
boundary conditions for E(ty + At/2) at level 1, we have to interpolate data between E(t;) and
E(ty + At) at level 0, and so on.

Figure 12 shows interpolations required to advance H at level 1. Observe that this time we must
use E(ty + 2At) at level 0 in order to construct E(tg + 1.25A¢) at level 1.

What all this adds up to is that level 1 E and H advance must be time-padded by level 0 data.
In order to advance level 1 from tg to ¢ty + 1.5At, which is the time slice of H, we must have level 0
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Figure 11: Interpolations from level 0 to level 1 for the level 1 E advancing procedure. H (ty — At/2)
from the previous time step must be remembered.

H(ty — At/2) E(to) H E H E(t, +2At)

H E H E H
E H FE H FE

Figure 12: Interpolations from level 0 to level 1 for the level 1 H advancing procedure. E(t, + 2At) at
level 0 is needed to provide boundary conditions for E(ty + 1.25A¢) at level 1.

data for all times between to — At/2 (the time slice of H) to to+ 2At (the time slice of the nezt E).
This time padding is needed for both level 1 time stepping schemes considered in this section.

5 The Code

In this section I am going to explain the code itself, as well as various algorithmic details, which
should be easier to understand when they are presented side by side with the code.

The C++ portion of the code lives just one one file. I tried to keep everything together so that
the code would be more concise and easier to read. The code begins with definitions or various
functions, which are all relatively trivial and its main portion is then presented towards the end of
the file and is only about 600 lines long.

The basic structure of main is as follows:

Construct a level 0 grid

Define data (E and H) on the level 0 grid

Prepare auxiliary counters and registers used in the iteration
Iterate

Write Gnuplot command files.

Within the Iterate portion of the code we time step level 0, and then generate level 1 and time step
it too. Data pertaining to both levels is written on Gnuplot data files. The structure of the Iterate
portion of the code is as follows:
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Begin Iterate
Update Ez at level O
Update Hx and Hy at level O
Update Ez at level 0 again (to get Ez(t + 1.5 * dt))
Tag level O cells
if (set of tags is not empty) then
Generate a level 1 grid
Prepare devices for generating level 1 data from level O data
Prepare initial data for advancing Ez at level 1
Write Gnuplot data for Ez at level 1
Update Ez at level 1
Write Gnuplot data for Ez at level 1
Update Hx and Hy at level 1
Update Ez at level 1
Correct Ez at level O using level 1 data
Prepare initial data for advancing Hx and Hy at level 1
Write Gnuplot data for Hx and Hy at level 1
Update Hx and Hy at level 1
Write Gnuplot data for Hx and Hy at level 1
Update Ez at level 1
Update Hx and Hy at level 1
Correct Hx and Hy at level O using level 1 data
end if
Write Gnuplot data for Ez, Hx and Hy at level O for this time slice
Save a pre-update Hx and Hy for use in the next iteration
End Iterate

There are numerous subtleties and details at various places, which this basic outline of the code
structure doesn’t cover, but I'm going to explain them all as we go along. This should make the
general structure of the code easier to understand too.

5.1 Constructing the Level 0 Grid and Data

The level 0 grid comprises 16 boxes that cover the 60 x 60 domain. It is not necessary, in principle, to
split level 0, but by doing so I demonstrate how computations can be parallelized, even computations
that pertain to level 0 alone. The way Chombo distributes the load is to assign each box and
computations that unfold within it to a different processor. Chombo provides methods for exchange
of ghost cells data between the boxes.

But before we can cover the domain with the boxes, we have to define it in the first place. This
is done as follows:

#define NX 60
#define REFINE_RATIO 2

int number_of_cells_0
int number_of_cells_1

NX;
number_of_cells_0O * REFINE_RATIO;
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ProblemDomain

domain_O(IntVect::Zero, (number_of_cells_0 - 1) * IntVect::Unit);
ProblemDomain

domain_1 = refine(domain_0, REFINE_RATIO);

The class ProblemDomain implements a uniform rectangular grid and adds to it information about
boundary conditions, i.e., periodic versus non-periodic. Non-periodic boundary conditions are a de-
fault, and so we don’t have to specify them here explicitly. The domain is specified by providing
coordinates of the lower-left corner as the first argument, and coordinates of the upper-right corner
as the second argument. The class IntVect implements simple vector objects with integer coor-
dinates. The specific constants IntVect: :Zero and IntVect: :Unit correspond to ((8)) and (G))
respectively. IntVect vectors can be multiplied by numbers, which is what we do here to generate
the upper right corner coordinates.

A friend function refine is used here to generate the level 1 domain out of the level 0 domain
that has just been defined.

The next portion of the code splits the level 0 domain into 16 boxes and organizes them into a
disjoint box layout. Although you can define data directly on a box, which can be extracted from a
domain (a domain is basically a box plus boundary conditions), data so defined will not be distributed
across the CPU cluster. So we have to go through the procedure of first defining the disjoint box
layout and then of defining level data on the layout to end up with distributed data.

Here is how the disjoint box layout for level 0 is constructed:

int number_of_boxes_0 = NB;

int box_size_0 = number_of_cells_0 / number_of_boxes_0;

Vector<Box> vector_of_boxes_0;

domainSplit(domain_0, vector_of_boxes_0, box_size_0);

Vector<int> vector_of_processes_0;

LoadBalance(vector_of_processes_0, vector_of_boxes_0);

DisjointBoxLayout box_layout_O(vector_of_boxes_0, vector_of_processes_0);
Datalterator data_iterator_O(box_layout_0);

The first step is to define a vector_of_boxes, which is what it says that it is. It is a vector of boxes.
Boxes of level 0 will be all organized into a vector and then stored on it. But when vector_of_boxes
is first created by the type declaration, it is empty. The vector is filled by the following call to function
domainSplit, which splits domain_0 into vector_of_boxes_0 given a preferred box_size_0.

This operation gives us a vector of boxes, but this is not yet a box layout. A box layout is obtained
by associating boxes with processors. And so we define an initially empty vector_of_processes_0,
which is then filled with MPI CPU numbers associated with appropriate boxes by the following call
to LoadBalance. Finally, having in hand both vectors, i.e., the vector of boxes and the vector of
processes, we can create the disjoint box layout and store it on box_layout. Before we leave this
portion of the code we generate the data iterator for this box layout. We will use the data iterator
to obtain portions of data associated with each box.

Now we are ready to define the data structures that correspond to fields E,, H, and H,. Here is
how we do it for F,:

#define NUMBER_OF_E_COMPONENTS 1
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#tdefine NG 1

int number_of_E_components = NUMBER_OF_E_COMPONENTS;

int number_of_ghost_cells = NG;

LevelData<FArrayBox> E_0(box_layout_0O, number_of_E_components,
number_of_ghost_cells * IntVect::Unit);

LevelData is a class template, meaning that we have to provide additional type information in order
to make it sufficiently specific. Here this additional type information is FArrayBox, which is a class
that associates field data with a grid in a box. The field is assumed to be of type Real, which may
evaluate to either float or double depending on how Chombo was configured, and it may have
several components. In this case E, has only one component. We also specify a number of ghost
cells that should surround each box of the disjoint box layout. Observe that once you enlarge the
boxes by adding the ghost cells to them the resulting box layout is no longer going to be disjoint.
It is possible to extract both the smaller disjoint boxes and the larger overlapping boxes from a
LevelData object.

Apart from defining E_0, which stands for “level 0 values of F,”, we are also going to define
E_0_0,E_0_1 and E_0_2 to store E,(ty), E,(to + Atg) and E,(to + 2Aty) as all three will be needed
for the interaction between level 0 and level 1 at every time step.

In a similar vain we also define:

#define NUMBER_OF_H_COMPONENTS 2

int number_of_H_components = NUMBER_OF_H_COMPONENTS;
LevelData<FArrayBox> H_0(box_layout_O, number_of_H_components,
number_of_ghost_cells * IntVect::Unit);

Here the number of components is 2, with the first component representing H, and the second one H,,.
We also define H_0_0, H_0_1 and H_0_2 to store H (to — Aty/2), H (to + Ato/2) and H (to + 3Aty/2)
respectively. These will be needed for the interaction between level 0 and level 1 too.

5.2 Preiteration Procedures

Once the data structures for E and H fields have been created, they are initialized to zero.

Then we create additional Chombo vectors for storing labels and times. The vectors are initially
empty. Every time a Gnuplot data file is written a numerical label pertaining to this file, as well
as time that corresponds to this data snapshot are pushed onto either a vector_of_labels or a
vector_of_times. There are separate vectors of labels and times for E_0, E_1, H_0 and H_1, since
these are all going to be dumped at various times and with various labels. A label is used in naming
the data file. It is then used again in invoking the data file within the Gnuplot command file. Times
that correspond to the data files are used in Gnuplot titles.

Apart from writing Gnuplot data files for E and H we are also going to write data files for tags
and for level 1 boxes. These have their own vectors of labels too.

Finally, we introduce variables that will collect and store the minimum and maximum values of
E,, H; and Hy. These will then be used in scaling the plots. There is a separate time counter for
level 0 called time_0 and additional two separate time counters for F, at level 1 and for H at level 1
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Figure 13: When a 2-dimensional (0,0) cell is refined with the refinement ratio of 2, it is split into 4
squares. The center of the lower-left square becomes now the beginning of the new refined grid. If the
(z,y) coordinates of the first level 0 cell-centered grid point were (0, 0) the (z,y) coordinates of the first
level 1 cell-centered grid point are now going to be (—0.25, —0.25) assuming that the level 0 grid constant
was 1.

called time_E_1 and time_H_1 correspondingly. All times are initialized to zero. Additionally we

Initialize:
Real ... dx_0 =1.0, dt_0 = dx_0 / 2.0, x0_0 = 0.0, y0_0 = 0.0;
Real ... dx_1 = dx_0 / REFINE_RATIO, dt_1 = dx_1 / 2.0,
x0_1 = x0_0 - dx_1 / 2.0, y0_1 = y0_0 - dx_1 / 2.0;

where dx_0 is the grid constant at level 0 and dt_0 is the level 0 time step. Similarly for level 1. We
also have variables for the position of the left-lower corner of the grid. It is (0, 0) at level 0 (x0_0 and
y0_0), but (—0.25,—0.25) at level 1. This shift must be taken into account when switching between
the levels, otherwise non-physical results will be produced by the code. The reason for the shift is
shown in figure 13.

5.3 The Iteration Loop

The iteration loop is the heart of the program. But its top level structure is very simple in the case
of this demo. We know that it would be useless to make an excessive number of time steps, because
we have no absorbing boundary conditions. As soon as the wave reaches the boundary, we must stop.
This happens after MAX_ITER iterations and so the loop is:

#define MAX_ITER 50

for (int count = 0; count < MAX_ITER; count++)

{

}

Inside the loop we advance E and H at level 0O first, then check if we have a reason to generate
level 1 and muck up with level 1 if we must.
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The level 0 time advance pushes F first:

E_0.copyTo(E_O.interval(), E_0_O, E_0_0.interval());
time_E_1 = time_0;
for (data_iterator_0.reset(); data_iterator_0.0k();
++data_iterator_0)
updateez_(E_O[data_iterator_0()].dataPtr(0),
H_O[data_iterator_0()].dataPtr(0),
H_O[data_iterator_0()].dataPtr(1),
&(E_O[data_iterator_0()].1loVect () [0]),
&(E_O[data_iterator_0()].hiVect () [0]),
&(E_O[data_iterator_0()].loVect() [1]),
&(E_O[data_iterator_0()].hiVect () [1]),
&time_O0, &dt_O0, &dx_0, &x0_0, &y0_0);
E_0.exchange(E_0.interval());
time_0 = time_O0 + dt_0;
vector_of_times_E_O.push_back(time_0);
E_O0.copyTo(E_O.interval(), E_0_1, E_O_1.interval());
E_0.copyTo(E_0.interval(), E_0_2, E_0_2.interval());

The first thing we do here is to save the current state of E,(tg) on E_0_0. This is accomplished by
invoking the copyTo method. The interval method returns the number of components. The copyTo
method may be used to copy just one or two components, but in this case we want it to copy all
there is — which happens to be just one (but we don’t have to know this). We are going to advance
E, from ty (E_0_0) to ty + Aty (E_0_1) first, then we’re going to advance it to ¢ty + 2At¢y (E_0_2),
because level 1 time step will need all three E,s for its boundary conditions. Having saved E,(ty)
on E_0_0 we save time_0 on time_E_1, because this will be the time slice at which we will have to
generate level 1 E,.

Now we advance F,. This is done by looping over all the boxes of level 0 and calling a Fortran
subroutine updateez_ for each box. The subroutine’s Fortran declaration (taken from update.F)
looks as follows:

subroutine updateez (Ez, Hx, Hy, imin, imax, jmin, jmax,
& time, dt, dx, x0, y0)

implicit none

integer imin, imax, jmin, jmax

real*8 Ez(imin:imax, jmin:jmax)

real*8 Hx(imin:imax, jmin:jmax)

real*8 Hy(imin:imax, jmin:jmax)

real*8 time, dt, dx, x0, yO

Consummate Fortran programmers remember that Fortran passes all variables by reference, not by
value. We must therefore obtain addresses of Ez, Hx, Hy and so on. These are obtained by:

1. Obtaining the C++ reference to the relevant field data (of type FArrayBox) in a given box,
e.g.,

22



E_O[data_iterator_0()]

2. Invoking the dataPtr method, which belongs to class FArrayBox and which returns the address
of the first data item that corresponds to a given component of the field. In our case the
component number is 0, because E, has one component only, so the full expression is

E_O[data_iterator_0()].dataPtr(0)

Chombo lays out its data in the Fortran fashion (column-major), so as to make passing to
Fortran subroutines easier. This also serves us to remember that Fortran is meant to be used
with Chombo — exactly as shown here.

Other variables that are passed to the subroutine are the integer coordinates of the lower-left corner
of the box and of the upper-right corner of the box. These are obtained by calling 1oVect and hiVect
methods on the FArrayBox object returned by E_O[data_iterator_0()]. Finally we have various
scalars, time_0, dt_0, and so on, which are passed by using the standard C (and C++) address
operator &.

The subroutine advances the field, and how it goes about it is a standard Fortran and FDTD
stuff, so I won’t elaborate on this here with the exception of drawing the reader’s attention to one
thing. The E advance within the Fortran code is accomplished by the following nested DO loop:

do j = jmin + 1, jmax - 1
do i = imin + 1, imax - 1
Ez(i, j) = Ez(i, j)
& + 0.5 * (Hy(i, j) - Hy(d - 1, j)
& - Hx(i, j) + Hx(i, j - 1))
end do
end do

Observe that we loop over the interior of the box only skipping its edges, i.e., ¢ = tmin, ? = %max;
7 = Jmin and j = jmax- This is because the edges correspond to the ghost cells and we don’t want to
update these — there is no point, since such updates will be discarded anyway.

Where exactly do we look up the ghost cells? This happens when ¢ = iin+1 and when j = jpin+1.
For these values of i and j magnetic fields are collected from the ghost cells: Hy (imin, j) and
Hx (i, jmin). The ghost cells that correspond to imax and jmax, on the other hand, are used in the
H update:

do j = jmin + 1, jmax - 1
do i = imin + 1, imax - 1
Hx (i, j) Hx(i, j) + 0.5 * (Ez(i, j) - Ez(i, j + 1))
end do
end do
do j = jmin + 1, jmax - 1
do i = imin + 1, imax - 1
Hy(i, j) = Hy(i, j) + 0.5 * (Ez(i + 1, j) - Ez(i, j))
end do
end do
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This is why we cannot carry out E and H updates at the same time. We must exchange the updated
ghost cells data for E, before we can update H. This is accomplished by calling the LevelData
method exchange. It can be used to exchange only a particular component, but here we exchange
the whole field:

E_O.exchange(E_0.interval());

Time time_0 is advanced explicitly by the C++ program outside of the Fortran field update
subroutine.

Having updated E, we save it on E_0_1 (the previous state of E, has already been saved on
E_0_0) and we copy it to E_0_2 too. We will then advance E_0_2 to to + 2Aty, but we will not
advance E_O itself. E_0 will instead be corrected by overwriting it with level 1 data if we find that
we need to build level 1 to begin with.

The next step is to advance H:

H_0.copyTo(H_O.interval(), H_0_1, H_O_1.interval());
time_0 = time_O0 - dt_0 / 2.0;
time_H_1 = time_O;
for (data_iterator_0O.reset(); data_iterator_0.0k();
++data_iterator_0)
updateh_(E_O[data_iterator_0()].dataPtr(0),
H_O[data_iterator_0()].dataPtr(0),
H_O[data_iterator_0()].dataPtr(1),
&(E_O[data_iterator_0()].loVect () [0]),
&(E_O[data_iterator_0()].hiVect () [0]),
&(E_O[data_iterator_0()].1loVect () [1]),
&(E_O[data_iterator_0()].hiVect () [1]),
&time_O, &dt_O, &dx_0, &x0_0, &y0_0);
H_0.exchange(H_0.interval());
time_0 = time_O0 + dt_O;
vector_of_times_H_0.push_back(time_0);
H_0.copyTo(H_O.interval(), H_0_2, H_0_2.interval());

The manipulations here should now be easy to understand. We save the current H on H_0_1. At
the end of the iteration loop H_0_1 will be copied to H_0_0 so that the latter will in effect end up
storing the previous value of H. Then we push our timer back by half a time step and remember
this time on time_H_1, in case we have to build and advance level 1. Then we iterate over the boxes
of level 0 again and call Fortran subroutine updateh_ on every box. This subroutine will advance
H . After the subroutine returns we have to exchange the ghost cell data by calling

H_0.exchange(H_0.interval());

we advance the timer and save the new H (ty + 3Atp/2) on H_0_2.
Having done this we advance E, yet again so as to reach E,(tg + 2At):
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time_0 = time_O0 - dt_0 / 2.0;
for (data_iterator_0.reset(); data_iterator_0.0k();
++data_iterator_0)
updateez_(E_0_2[data_iterator_0()].dataPtr(0),

H_O[data_iterator_0()].dataPtr(0),
H_O[data_iterator_0()].dataPtr(1),
&(E_0_2[data_iterator_0()].1loVect()[0]),
&(E_0_2[data_iterator_0()].hiVect () [0]),
&(E_0_2[data_iterator_0()].1loVect() [1]),
&(E_0_2[data_iterator_0()].hiVect() [1]),
&time_0, &dt_0, &dx_0, &x0_0, &y0_0);

E_0_2.exchange(E_0_2.interval());

Observe that we don’t touch E_0. Instead it is E_0_2 that gets pushed. We don’t advance the clock
after the subroutine returns either, because we want the clock to stay at t_0 + \Delta t_0 in
preparation for the next iteration. After this time step E_0_2 will be discarded.

This completes the level 0 advance.

5.4 Tagging Cells of Level 0

Now we have data for E and H for six different time slices — including one that is quite ahead, i.e.,
to + 2Aty. We use this data to tag level 0 cells for refinement. This is done by

IntVectSet tag_set_O;
tag_cells(tag_set_0, E_0_0, E_0_1, E_0_2, H_0_0, H_.0_1, H_0_2);

The first line declares and creates the set of tags, tag_set_0. The second line calls my own function,
which goes through every cell of level 0 and looks at the 6 values of the fields that are passed to it.
We can now tag cells where the values of the fields exceed a certain threshold and this is what the
following version of function tag_cells does:

void tag_cells(IntVectSet &tag_set,
LevelData<FArrayBox> &E_O,
LevelData<FArrayBox> &E_1,
LevelData<FArrayBox> &E_2,
LevelData<FArrayBox> &H_O,
LevelData<FArrayBox> &H_1,
LevelData<FArrayBox> &H_2)

DisjointBoxLayout box_layout = E_0.disjointBoxLayout();
Datalterator data_iterator(box_layout);

Real diff_threashold2, value_threashold?2;
int tag_on_diffs = FALSE;

int tag_on_values = FALSE;

ParmParse parameter_parser;
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parameter_parser.query("tag_on_diffs", tag_on_diffs);
parameter_parser.query("tag_on_values", tag_on_values);

diff_threashold2 = DIFFS_TAG_THRESHOLD * DIFFS_TAG_THRESHOLD;
value_threashold2 = VALUE_TAG_THRESHOLD * VALUE_TAG_THRESHOLD;

tag_set.makeEmpty() ;

for (data_iterator.reset(); data_iterator.ok(); ++data_iterator)
{
BoxIterator box_iterator(E_O[data_iterator()].box());
for (box_iterator.reset(); box_iterator.ok(); ++box_iterator)
{
IntVect cell = box_iterator();
Box cell_box(cell, cell);

Real Ez_0 = E_O[data_iterator()].get(cell, 0);
Real Hx_0 = H_O[data_iterator()].get(cell, 0);
Real Hy_O = H_O[data_iterator()].get(cell, 1);
Real Ez_1 = E_1[data_iterator()].get(cell, 0);
Real Hx_1 = H_1[data_iterator()].get(cell, 0);
Real Hy_1 = H_1[data_iterator()].get(cell, 1);
Real Ez_2 = E_2[data_iterator()].get(cell, 0);
Real Hx_2 = H_2[data_iterator()].get(cell, 0);
Real Hy_2 = H_2[data_iterator()].get(cell, 1);

if (tag_on_diffs)

{
Real dEz_O = Ez_1 - Ez_O;
Real dEz_1 = Ez_2 - Ez_1;
Real dHx_O0 = Hx_1 - Hx_O;
Real dHx_1 = Hx_2 - Hx_1;
Real dHy_O = Hy_1 - Hy_O;
Real dHy_1 = Hy_2 - Hy_1;

if (((dEz_0 * dEz_0) > diff_threashold2)
[l ((dHx_O * dHx_0) > diff_threashold2)
Il ((dHy_O * dHy_0) > diff_threashold2)
|| ((dEz_1 * dEz_1) > diff_threashold?2)
|| ((dHx_1 * dHx_1) diff_threashold?2)
|| ((dHy_1 * dHy_1) > diff_threashold?2))
tag_set |= cell_box;

*

>
>
>
>

*

if (tag_on_values)
{
if (((Ez_O * Ez_0) > value_threashold2)
[l ((Hx_0 * Hx_O + Hy_O * Hy_0) > value_threashold2)
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[l ((Ez_1 * Ez_1) > value_threashold2)
[l ((Hx_1 * Hx_1 + Hy_1 * Hy_1) > value_threashold2)
|l ((Ez_2 * Ez_2) > value_threashold?2)
[l ((Hx_2 * Hx_2 + Hy_2 * Hy_2) > value_threashold2))
tag_set |= cell_box;
}
}
}
return;

}

We assume that all fields live on the same disjoint box layout. It is therefore sufficient to ex-
tract the box layout from the first field and then use it for others. This is done by invoking the
disjointBoxLayout method of the LevelData class. We can then associate the data iterator with
the box layout, the same way we did it when advancing fields of level 0.

We clear the set of tags by invoking the makeEmpty method.

Now we iterate over the boxes of LevelData. For each box returned by E_O[data_iterator ()] .box()
we create the box iterator. The box iterator simply returns integer coordinates of every point in the
box. With these in hand, as we iterate over the box, we can retrieve the values of E,, H, and H,
for every point within the box by calling the FArrayBox: :get method, which takes the point and
the number of the component as its arguments.

Now we can check check if any of the numbers returned exceeds the predetermined threshold (the
tag_on_values option). If the threshold is exceeded by any of the fields, we add the corresponding
cell to the set of tags.

The other option (tag_on_diffs) looks at how much the fields change in time, since this is
directly related to how much they change in space as well on account of Maxwell equations. It is
where they change most that we want to have a higher resolution, both in space and in time.

If the set of tags is not empty, it means that we have to refine our grid, build level 1 data, and
then advance it. This is going to be a lot of work, of course, both to code (which means a lot of work
for me) and to compute (which means a lot of work for computer).

The whole level 1 part of the code is enclosed within the following if statement:

if (! tag_set_0.isEmpty()) {
. <a lot of hair raising stuff here> ...

} // of if (! tag_set_0.isEmpty())

5.5 Constructing the Level 1 Grid

In order to construct level 1 we have to
1. generate a vector of level 1 boxes that would cover the tagged cells of level 0;

2. convert the vector into a disjoint box layout, i.e., associate MPI process numbers with the
boxes;

3. sow E and H fields on the level 0 disjoint box layout by interpolating data from level 1.
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The level 1 boxes are generated by a special device that applies a Berger-Rigoutsos algorithm
to the tagged cells and boxes of level 0. The newly generated boxes of level 1 are nested within the
level 0 boxes in a special way that ensures correct data transfers between the two levels. The device
is implemented as a Chombo class BRMeshRefine. It is used in two stages

1. we have to create and initialize the device first;
2. then we use the device by invoking a method called regrid.

The regrid method works on multiple Chombo levels all at the same time. The levels are represented
by a wvector of vectors of bozxes, each entry in the vector (which is a vector of boxes) representing a
level. We have to specify which levels we want to refine and what refinement ratios we want to use.
What comes out is a new vector of vectors of boxes, which can be then used to generate disjoint box
layouts for each level. Once the layouts have been generated, various fields can be sown on them by
interpolating their values from coarser levels.

In the case of this demo it is all going to be much simpler, because we only have two levels, but
the machinery is the same.

Here is what this part of the code looks like:

#define REFINE_RATIO

#define REFINE_FILL_RATIO
#define REFINE_BLOCK_FACTOR
#define REFINE_BUFFER_SIZE
#define REFINE_MAX_SIZE
#define REFINE_BASE_LEVEL
#define REFINE_TOP_LEVEL
#define INTERPOLATION_RADIUS

PR O OO, B KL, N

Vector< Vector<Box> > old_vector_of_vectors_of_boxes,
new_vector_of_vectors_of_boxes;

old_vector_of_vectors_of_boxes.clear();
new_vector_of_vectors_of_boxes.clear();
old_vector_of_vectors_of_boxes.push_back(vector_of_boxes_0);

Vector<IntVectSet> vector_of_tag_sets;
vector_of_tag_sets.clear();
vector_of_tag_sets.push_back(tag_set_0);

int refine_ratio = REFINE_RATIO;

Vector<int> vector_of_refinements;
vector_of_refinements.clear();

vector_of _refinements.push_back(refine_ratio);

Real refine_fill_ratio = REFINE_FILL_RATIO;
int refine_block_factor = REFINE_BLOCK_FACTOR;
int refine_buffer_size = REFINE_BUFFER_SIZE;
int refine_max_size = REFINE_MAX_SIZE;
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int refine_base_level = REFINE_BASE_LEVEL;
int refine_top_level = REFINE_TOP_LEVEL;

BRMeshRefine mesh_refine(domain_0, vector_of_refinements,
refine_fill_ratio, refine_block_factor,
refine_buffer_size, refine_max_size);

mesh_refine.regrid(new_vector_of_vectors_of_boxes,

vector_of_tag_sets,
refine_base_level,
refine_top_level,
old_vector_of_vectors_of_boxes);

We begin by creating the two crucial vectors:
e old_vector_of_vectors_of_boxes,
e new_vector_of_vectors_of_boxes.

Both vectors are cleared and then we push vector_of_boxes_0, i.e., the vector of boxes that rep-
resents level 0, onto the old_vector_of _vectors_of_boxes. Chombo vectors are similar to stacks
and the push_back method simply appends an item to the vector extending its length at the same
time.

Then we create a vector_of_tag_sets. We have only one tag set here, the one generated for
level 0, and we push it onto the vector.

Finally we have to create a vector_of_refinements. Each entry in this vector specifies the
refinement between this level and the next level.

Then we have to initialize a number of scalar parameters that are used to steer the refinement
procedure (e.g., they can be used to determine the smallest size of a newly generated box). Here
I mostly adhered to the defaults suggested in the Design Document. Playing with the value of
REFINE_BLOCK_FACTOR showed that the regrid method can be easily broken if the numbers are not
set correctly (a run-time error is generated). For example, if the smallest upper level box is 16x16
then we cannot request REFINE_BLOCK_FACTOR of, say, 5. On the other hand allowing for boxes of too
small a size to be generated within the refined level may lead to severe computational inefficiencies.
Generally, the larger the boxes, the better.

Eventually with everything in place we create the device, mesh_refine, and then use it to generate
the new level 1 vector of boxes that is going to be the second entry in the new_vector_of_vectors_of_boxes.
The first entry will remain vector_of_boxes_0:

Vector<Box>& vector_of_boxes_1 = new_vector_of_vectors_of_boxes[1];

Now we go through the similar procedure to the one we deployed to generate the disjoint box
layout for level 0:

Vector<int> vector_of_processes_1;
LoadBalance(vector_of_processes_1, vector_of_boxes_1);
DisjointBoxLayout

box_layout_1(vector_of_boxes_1, vector_of_processes_1);
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Datalterator data_iterator_1(box_layout_1);

Figures 3 and 4 illustrate this procedure. We begin with a set of tagged cells at level 0 at
t = 20.5 and end up with a level 1 grid that is organized into boxes and distributed amongst the
MPI processes. Figure 6 shows both the tagged cells and the level 1 grid points in a close-up.

5.6 Filling the Level 1 Grid With Data

Now we have to create fields for level 1 and fill them with data. The field is an object of type
LevelData that is created the same way as for level 0. But here we must also associate an interpolator
with it, so that we can fill it with data interpolated from level 0:

LevelData<FArrayBox> E_1(box_layout_1, number_of_E_components,
number_of_ghost_cells * IntVect::Unit);
FineInterp E_interpolator(box_layout_1, number_of_E_components,
vector_of _refinements[0], domain_1);

The device that does the interpolation is an object of class FineInterp. When creating this object
we must specify the box layout it is associated with, the number of field components we are going
to interpolate, the refinement between this and the coarser level and the domain the current box
layout fits in. The device so created is then invoked with the interpToFine method that is going to
interpolate level 0 data and fill all level 1 boxes with it.

This device will not fill the level 1 ghost cells though. For this we need to use another device,
which is called PiecewiseLinearFillPatch, and which has to be specified for the E field too:

PiecewiseLinearFillPatch

E_fill_patch(box_layout_1, box_layout_0, number_of_E_components,
domain_1, vector_of_refinements[0],
interpolation_radius) ;

This device fills only the ghost cells of level 1 with data interpolated from level 0, but it will interpolate
the data both in space and in time, in order to provide data for level 1 boundary conditions at every
level 1 time step. The FineInterp class does not interpolate in time.

Now we repeat the same procedure to generate LevelData and the interpolators for H:

LevelData<FArrayBox> H_1(box_layout_1, number_of_H_components,
number_of_ghost_cells * IntVect::Unit);
FineInterp H_interpolator(box_layout_1, number_of_H_components,
vector_of _refinements[0], domain_1);
PiecewiselLinearFillPatch
H_fill_patch(box_layout_1, box_layout_0, number_of_H_components,
domain_1, vector_of_refinements[0],
interpolation_radius) ;
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With these two interpolation devices in hand we can now fill the LevelData fields with data.
And this is how we do it for E:

E_interpolator.interpToFine(E_1, E_0_0);
if (reuse_level_1_data && have_valid_level_1_E_data)
E_1_save.copyTo(E_1_save.interval(), E_1, E_1.interval());
E_1.exchange(E_1.interval());
E_fill_patch.fillInterp(E_1, E_0_0, E_0_0, 0.0,
start_source_component,
start_destination_component,

number_of_E_components) ;

The first line fills the entire E_1 with level 0 data interpolated from E_0_0. The following if statement
overwrites a portion of E_1 with saved level 1 data, if such is available, from the previous iteration.
Only the portion of level 1 data from the previous grid that overlaps with the current grid will be
copied. Then we attend to the ghost cells by exchanging the data between level 1 boxes, and by
filling ghost boxes on the coarse/fine boundary with data interpolated from level 0.

The procedure is more complicated for the H field though. This time we have to time-interpolate
data between H (ty — Ato/2) and H (to + Aty/2) first, as shown in figure 11. I have written my own
function for doing the time-interpolation called time_interpolate, which has a very similar synopsis
to the fillInterp method of the PiecewiseLinearFillPatch class, but it interpolates within the
level instead. Then the time-interpolated data is space interpolated from level 0 to level 1 using
interpToFine:

LevelData<FArrayBox> H_O_x(box_layout_O, number_of_H_components,
number_of_ghost_cells * IntVect::Unit);

time_interpolate(H_O_x, H_0_0, H_0_1, 0.75,

start_source_component,
start_destination_component,
number_of_H_components) ;

H_interpolator.interpToFine(H_1, H_0_x);

H_1.exchange(H_1.interval());

H_fill_patch.fillInterp(H_1, H_0_0, H_0_1, 0.75,
start_source_component,
start_destination_component,
number _of_H_components) ;

Observe that in both cases we call the exchange method of the LevelData class prior to calling
fillInterp. The reason for this is that fillInterp fills the ghost cells on the coarse/fine boundary
only. The ghost cells within the level 1 grid, which are not on the coarse/fine level boundary have
to be filled by calling exchange, the same way we did it for the level 0 computations.

This demonstration code does not reuse level 1 data for H_1, because it is never readily available
and it would have to be time-interpolated. However, level 1 data reuse both for E_1 and for H_1
should be easy to implement for At; = Aty/3.
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5.7 Advancing the Level 1 E

Now we have the level 1 grid constructed, the field data structures declared and filled and we are
ready to advance the level 1 E. This is done very similarly to the level 0 advance. The only difference
is that after every time step we have to call the fillInterp method in order to fill the coarse/fine
boundary with new data that is time and space interpolated from level 0. But we invoke the exchange
method too, because we have to exchange the ghost data between the level 1 boxes as well:

for (data_iterator_1.reset(); data_iterator_1.0k();
++data_iterator_1)
updateez_(E_1[data_iterator_1()].dataPtr(0),

H_1[data_iterator_1()].dataPtr(0),
H_1[data_iterator_1()].dataPtr(1),
&(E_1[data_iterator_1()].loVect()[0]),
&(E_1[data_iterator_1()].hiVect () [0]),
&(E_1[data_iterator_1()].loVect()[1]1),
&(E_1[data_iterator_1()].hiVect () [1]1),
&time_E_1, &dt_1, &dx_1, &x0_1, &yO0_1);

time_E_1 = time_E_1 + dt_1;

E_1.exchange(E_1.interval());

// At this time E_1 is exactly in the middle between
// E_0_0 and E_O_1. We interpolate ghost cells from
// both then.

E_fill_patch.fillInterp(E_1, E_0_0, E_0_1, 0.50,
start_source_component,
start_destination_component,
number_of_E_components) ;

Then we advance the magnetic field H similarly:

time_E_1 = time_E_1 - dt_1 / 2.0;
for (data_iterator_1.reset(); data_iterator_1.0k();
++data_iterator_1)
updateh_(E_1[data_iterator_1()].dataPtr(0),

H_1[data_iterator_1()].dataPtr(0),
H_1[data_iterator_1()].dataPtr(1),
&(E_1[data_iterator_1()].loVect() [0]),
&(E_1[data_iterator_1()].hiVect () [0]),
&(E_1[data_iterator_1()].1loVect () [1]),
&(E_1[data_iterator_1()].hiVect () [1]),
&time E_1, &dt_1, &dx_1, &x0_1, &y0_1);

time_E_1 = time_E_1 + dt_1;

H_1.exchange(H_1.interval());

// At this time H_1 is 0.75 * H_O_1 + 0.25 * H_0_2. We
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// interpolate on the ghost cells accordingly. 0.25 means
// that H_1 is *closer* to H_O_1.

H_fill_patch.fillInterp(H_1, H_ 0_1, H_0_2, 0.25,
start_source_component,
start_destination_component,
number _of_H_components) ;

And finally we advance E yet again so as to get it to t9 + Atg and match E(ty + Atg) of level 0:

time_E_1 = time_E_1 - dt_1 / 2.0;
for (data_iterator_1.reset(); data_iterator_1.0k();
++data_iterator_1)
updateez_(E_1[data_iterator_1()].dataPtr(0),

H_1[data_iterator_1()].dataPtr(0),
H_1[data_iterator_1()].dataPtr(1),
&(E_1[data_iterator_1()].loVect()[0]),
&(E_1[data_iterator_1()].hiVect () [0]),
&(E_1[data_iterator_1()].loVect()[1]1),
&(E_1[data_iterator_1()].hiVect () [1]),
&time_E_1, &dt_1, &dx_1, &x0_1, &y0_1);

time_E_1 = time_E_1 + dt_1;

E_1.exchange(E_1.interval());

// At this time E_1 is exactly on the same time slice
// as E_0_1. We interpolate on the ghost cells from
// E_0_1 alone then.

E_fill_patch.fillInterp(E_1, E_0_1, E_0_1, 0.0,
start_source_component,
start_destination_component,
number_of_E_components) ;

At the end of this double time step we save E_1 for a possible future use, i.e., if a new fine level is
going to be generated on the next coarse level time step:

E_1_save.define(box_layout_1, number_of_E_components,
number_of_ghost_cells * IntVect::Unit);

E_1.copyTo(E_1.interval(), E_1_save, E_1_save.interval());

have_valid_level_1_E_data = TRUE;

5.8 Correcting the Level 0 E

The level 1 E(ty + Atg) obtained in this way should be more accurate than the level 0 E(to + Atp),
because we have advanced it on a finer grid and used a shorter time step. We are therefore going to
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replace the level 0 E(to + Atp) with data obtained by averaging the level 1 E(ty + Atg) date in the
parts of the level 0 grid that overlap with the level 1 grid. This is done by a special device of class
CoarseAverage, which is used as follows:

CoarseAverage E_averager(box_layout_1, box_layout_O,
number_of _E_components,
vector_of_refinements[0]);

E_averager.averageToCoarse(E_0, E_1);

The declaration must specify the disjoint box layouts at both levels as well as the number of the field
components and the refinement ratio. Then the averaging and the data transfer is accomplished by
calling the averageToCoarse method of the class.

This completes the fine level E advance. There is one more thing only that has to be done and
that is highly non-trivial and I am going to talk about it briefly in section 6.

The H field is advanced similarly. We have to prepare the initial condition for it first, then we
advance the field and push it back onto level 0.

5.9 Generating Gnuplot Data Files

Gnuplot data files are written throughout the advance so that field evolution can be observed at
both levels. I have constructed my own function write_level_data that takes an object of class
LevelData and writes its components on plain text files in a format readable by the Gnuplot splot
function.

This is based on the obvious assumption that the data can be collected. This assumption is going
to break though, when the program is run under MPI on a CPU farm. In fact this program, as it
is presented in this report, cannot be run on a farm, even though the basic data structures and the
basic composition of the program prepare it for distribution over multiple CPUs. The reason for
this is that iterations over LevelData boxes return only the boxes that are associated with a given
MPI process. Chombo does not provide means for exchange of data between CPUs other than the
exchange method of the LevelData class. Consequently my data collecting function will not work
on a parallel processor.

When we get to running Chombo jobs on multiple CPUs we will have to switch to using Chombo
IO, which is based on HDF5. HDF5 data files cannot be viewed with Gnuplot. We will have to
develop our own facilities for extracting relevant data from the Chombo HDF5 files and viewing
them in a way that is similar to what I have demonstrated in this report.

5.10 Reading the Input File

The execution of the program can be customized by setting a number of logical parameters on an
input file, which is read at the very beginning by the parameter_parser object of class ParmParse.
The following parameters are defined:

tag_on_diffs Chombo cells are tagged if field derivatives exceed a certain threshold. 1 means “on”,
0 means ”off”.

tag_on_values Chombo cells are tagged if field values exceed a certain threshold. “on” and “off”
as above.

advance_el Level 1 electric field is constructed and advanced if there are any tagged cells on level 0.
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advance_hl Level 1 magnetic field is constructed and advanced if there are any tagged cells on
level 0.

correct_e0 Level 0 electric field is corrected by averaging level 1 data if available.
correct_h0 Level 0 magnetic field is corrected by averaging level 1 data if available.

reuse_level_1_data Previous step level 1 data is reused when available and valid for generation of
the level 1 electric and/or magnetic field at the beginning of the next level 1 time step.

hidden3d The gnuplot command file is prepared for the display of data using hidden line removal.
This is very time consuming and the resulting animations are very slow. For this reason only
a quarter of the domain is displayed.

verbose The program runs in a verbose mode. It prints very little at present and clumsily to boot.
Used for minor debugging only.

Here is an example of an input file fdtd. input:

tag_on_diffs = 1
tag_on_values = 1
advance_el
advance_h1l
correct_e0
correct_hO
reuse_level_1_data = 1
hidden3d = 0

verbose = 0

nonou
N

6 Refluxing

As the fine level data is advanced there is something that flows away from the fine region and into
the coarse region. This something has been crudely approximated by the coarse level computations.
There is also something that flows from the coarse level and into the fine level. This something is
represented by filling the fine level ghost cells with data interpolated in time and in space from the
coarse level. But the stuff that flows from the fine level into the coarse level is basically discarded in
the current demonstration program.

This can be seen also by focusing on what happens to the ghost cells data of level 1. This data
is exchanged between the level 1 boxes, but if a given side of a level 1 box doesn’t have any level 1
neighbours, the data is discarded instead of, say, being passed to the level 0 ghost cells adjacent to
this box — this, because there are no level 0 ghost cells there, and because this level 0 time step has
already been executed.

Chombo provides special machinery in the form of the LevelFluxRegister class for capturing
the stuff, accumulating it through the fine level time stepping procedure, and then spilling it onto
the coarse level. The spilling itself must be done with caution too, because some of this stuff is
already there, since it’s been computed on the coarse level. What we really want to do is to compare
the coarse level “flux” with the fine level “flux” on the coarse/fine boundary and correct the coarse
level flux if need be. This is what I have called “spilling”. We don’t really spill all that we have
accumulated through the fine level time step. We only spill the excess, so to speak, and even this
spilling may be moderated by weighting between the coarse level and the fine level “fluxes”.
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This procedure is called refluzing. The current demo doesn’t do it yet. As can be seen from
the animations, this lack of refluxing doesn’t seem to affect the evolution of the fields visibly, but
this is because our computations are not very accurate and because the missing flux corrections are
probably very small.

But refluxing is essential for AMR and we will have to work out how to do it in the FDTD
context. It is not obvious what should be refluxed. Should we look at E x H? If so, how should we
use it to make specific corrections to E and H at the coarse/fine boundary? It is even less obvious
how refluxing should be carried out in combination with the leapfrog time stepping.

This single issue ought to be resolved and thoroughly tested, but it doesn’t really have to halt all
further development. It is quite OK to construct and test example codes without this feature and
then add it, once we know how to do this.

7 A Multilevel System

The program presented in this report is a very simple 2-level AMR application. It can be easily
extended to 3 or more levels, although at a highly increasing cost in terms of program complexity.
The Chombo class AMR is specially designed to facilitate construction of the multi-level logic in AMR
programs. This class, however, can be used only when everything else is in place, fully understood
and fully tested. We will have to figure out and test the refluxing problem, and we will have to have
in place utilities for viewing and anlyzing Chombo HDF5 output first.

My preference is for managing AMR, levels manually, as I have shown in this program, up to
perhaps 3 levels deep, and using such a framework to construct and run tests of the method in the
FDTD context. Once we have everything ironed out, fully understood, debugged, and ready to go,
then will be the right time to pack it all into the AMR class and deliver an FDTD/Chombo production
environment.
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